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Abstract: Recently, deep learning approaches, especially convolutional neural networks (CNNs), have
attracted extensive attention in iris recognition. Though CNN-based approaches realize automatic
feature extraction and achieve outstanding performance, they usually require more training samples
and higher computational complexity than the classic methods. This work focuses on training a
novel condensed 2-channel (2-ch) CNN with few training samples for efficient and accurate iris
identification and verification. A multi-branch CNN with three well-designed online augmentation
schemes and radial attention layers is first proposed as a high-performance basic iris classifier.
Then, both branch pruning and channel pruning are achieved by analyzing the weight distribution
of the model. Finally, fast finetuning is optionally applied, which can significantly improve the
performance of the pruned CNN while alleviating the computational burden. In addition, we further
investigate the encoding ability of 2-ch CNN and propose an efficient iris recognition scheme suitable
for large database application scenarios. Moreover, the gradient-based analysis results indicate that
the proposed algorithm is robust to various image contaminations. We comprehensively evaluated
our algorithm on three publicly available iris databases for which the results proved satisfactory for
real-time iris recognition.

Keywords: iris recognition; online augmentation; convolutional neural network; deep learning;
network pruning

1. Introduction

Iris texture patterns are believed to be randomly determined during fetal development
of the eye and are invariant to age [1]. Hence, the iris pattern of each eye can be seen
as a universally unique biometric feature even distinct between twins. As one of the
most secure and reliable biometric identification techniques, iris recognition has been
widely used in banking, border security control, mobile phones, etc. [2–4]. Compared
with other mainstream biometric approaches, including face recognition [5], palmprint
recognition [6], and fingerprint recognition [7], iris recognition is safer and more sanitary
because of its characteristics of being non-contact and having less exposure [8]. The merits
of iris recognition have prompted increasing efforts for investigating more accurate and
efficient iris feature extraction algorithms under various conditions [9–11].

Verification and identification are the two main application scenarios for iris recogni-
tion. Given an iris image of an eye, the iris recognition system in verification mode will
judge whether it is registered or not according to the previously enrolled iris images, which
is usually a “one-against-one” comparison scheme. In the identification mode, the system
will answer “who is he” to this iris image, which performs a “one-against-all” comparison
scheme most of the time.

The deep learning methods, especially convolutional neural network (CNN), have
achieved considerable success in many computer vision (CV) tasks [12–16]. Handcrafted
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feature extraction approaches have been outclassed by CNN, with its capability to automat-
ically learn relevant features from sufficient training data [17,18]. Recent advances in iris
recognition have studied the feasibility of applying the CNN to iris image processing, such
as iris segmentation [19,20], iris recognition [21–23], and fake iris detection [24,25]. Previous
studies on iris recognition [21,26] indicated that the CNN-based methods could effectively
learn the inherent characteristics of iris images and achieve superior performance than
the classic iris matching method represented by IrisCode [27]. The success of early efforts
prompts us to further investigate the potential of deep CNN for addressing challenging
problems in real-time iris recognition.

2. Related Work

The earliest automatic iris recognition system can be traced back to 1987. Flom and
Safir [28] proposed a conceptual iris recognition system without implementation details
and were authorized the first patent. From then on, various iris texture feature extraction
and classification methods emerged, which can be approximately divided into classic
handcrafted feature engineering methods and recently appeared deep learning methods.

One of the most influential iris recognition algorithms was proposed by
Daugman [27,29,30]. In his pioneering works, the boundary of the pupil and iris was
first detected by the integrodifferential operator and normalized by Daugman’s rubber
sheet model. Then, the extracted iris was transformed into a series of encoding (which
is usually referred to as IrisCode) by applying Gabor phase-quadrant feature descriptor.
Finally, in the identification or verification stage, the hamming distance between IrisCode
was calculated and hence attained the recognition result. Daugman’s algorithm and work-
flow are still widely utilized in current iris recognition systems. Later, numerous iris feature
extraction approaches arose, including variations of the Gabor kernel [31–33], the SIFT
and SURF-based features [34–36], feature fusion methods [37–39], and human-in-the-loop
methods [40,41]. These methods usually yield a notable performance with few training
data. Nevertheless, their feature extractors are required to be delicately designed and not
robust to image contaminations such as eyelid and eyebrow, which places higher demands
on image quality and preprocessing steps.

Recently, deep learning-based iris recognition approaches have been increasingly
studied. Deep CNN is usually used as a feature extractor, which encodes the iris image
to a set of feature vectors and then measures their distance as the aforementioned classic
method does. Gangwar et al. [42] proposed a deep CNN model with less risk of overfitting
for extracting the iris feature. Nguyen et al. [43] explored the encoding ability of the
pre-trained CNN architecture, with results showing that the network, such as AlexNet
and VGG-net trained on other large-scale image databases, can be effectively transferred
to the task of iris texture feature extraction. Raja et al. [44] extracted robust multi-patch
iris features by CNN with sparse filters. More recently, Wang et al. [26] and Liu et al. [45]
collected iris features using dilated residual network and capsule network, respectively. In
addition, deep CNN can also be directly utilized as a classifier. In this way, the pairwise
training dataset was generated with all possible combinations of training samples. In the
testing phase, paired images were fed into CNN, and the result was provided to examine
whether the images belonged to intra-class or inter-class. With this approach, few training
samples were needed for the deep neural network. This type of method was first discussed
in detail in the work of Zagoruyko et al. [46], and different types of networks, including
siamese, pseudo-siamese, 2-channel (2-ch) deep networks, were constructed for image
patch comparison. The experimental results showed that the 2-ch network outperformed
the other networks at the cost of computational complexity. Some efforts have also been
focused on iris verification using 2-ch network. Liu et al. [47] proposed a 2-ch CNN
architecture named DeepIris for heterogeneous iris verification. In their algorithm, six
forward propagations were required to prevent rotation differences, which led to the heavy
computational burden. Špetlík et al. [48] modified the 2-ch CNN with a unit-circle layer for
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iris verification. Proença et al. [49] integrated an iris segmentation deep learning model
and a 2-ch iris classification CNN for segment-less iris verification.

Though the existing deep learning-based methods are proven to be effective for
automatic end-to-end iris feature extraction and classification, several issues remain to be
further addressed. For example, due to high computational complexity, the 2-ch methods
have only been successfully applied to the iris verification scenario. In addition, the deep
learning model is sensitive to image contamination and training data scale, which poses a
challenging problem to real-time iris recognition. Furthermore, the hyperparameters in
CNN architecture, such as the number of layers and kernels, have not been fully optimized.

The objective of this paper is to develop a deep learning approach with strong robust-
ness to various iris contaminations for large-scale iris identification and verification. To
meet this goal and overcome the limitations mentioned above, we construct a multi-branch
2-ch CNN with a radial attention layer. This model is trained with online augmentation
schemes to gain a robust iris classifier. Structural pruning is conducted for accurate and
efficient iris matching. Finally, the encoding ability of the model is explored, and the per-
formance of iris identification and verification is evaluated on three large-scale databases.
The key novelties of our work can be concluded as in the following:

• To allow the 2-ch CNN to apply in the large-scale iris identification scenario, we
investigate the encoding ability of the 2-ch CNN in different layers and put forward a
hybrid framework which takes advantage of the accurateness of 2-ch CNN and the
efficiency of the encoding and matching.

• A radial attention layer that can guide our model to focus on relevant iris regions
along the radial direction is proposed, and branch level model pruning is realized by
norm computing.

• Three types of online augmentation schemes are designed to enhance the robustness
of the model. The successful modeling of brightness jitter, iris image rotation, and
radial extension occurring in real-time iris recognition can prevent the model from
overfitting and allow the model to train on the small-scale training dataset.

• A condensed 2-ch CNN with optimal architecture is obtained by pruning the model at
the channel level as well as the branch level.

The remainder of this paper is organized as follows: Section 3 presents the details
of the proposed iris recognition method. Section 4 illustrates the experiment settings and
experimental results on three different databases. Section 5 extends the experimental
results and makes additional comparisons. Section 6 summarizes the research and draws
the conclusion.

3. Methods

The simplified iris identification and verification workflows of the proposed method
are illustrated in Figure 1. As shown in Figure 1a, a full-sized CNN is first trained, and the
subsequent pruning and finetuning procedures enable the CNN to obtain better perfor-
mance and efficiency. Finally, a pair of preprocessed and normalized irises is fed into CNN
to calculate the inference distance. Meanwhile, the iris identification workflow is illustrated
in Figure 1b. Contrary to the “one-against-one” comparison strategy implemented in
the verification scenario, the identification scenario needs to conduct more comparison
operation in one identification epoch (i.e., the process of a sample paired with all databases).
Consequently, we add an external encoding matching step, which can effectively alleviate
the computational burden of the 2-ch CNN in iris identification scenario. Further, the
details of each step are explained in the following subsections.
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segmentation module of OSIRIS v4.1, the contours of the iris are detected by the Viterbi 
algorithm [51]. Subsequently, a modified Daugman’s rubber-sheet model is deployed to 
perform normalization. With this approach, the original iris image in any resolution is 
unwrapped into a size-invariant band. In this work, all the iris images are normalized to 
the size of 103 × 360. To eliminate the inference, we cut off the first 3 rows and the bottom 
40 rows and then resize the image to a resolution of 30 × 360. After that, the contrast of the 
image is enhanced using histogram equalization [52]. In addition, a conditional hori-
zontal cropping step is leveraged in the training stage of full-size network, which crops 
20–164 columns and 240–306 columns and hence obtains a 30 × 150 normalized image. It 
contributes to reducing the time consumption and the probability of overfitting in the 
training stage. 
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gion between inner and outer green boundary in (a) is the segmented iris. 

Figure 1. The whole architecture of our iris recognition algorithm. (a,b) demonstrate the verification and identification
workflow, respectively.

3.1. Preprocessing

We uniformly perform iris segmentation and normalization using an open-source tool
named OSIRIS v4.1 [50]. Figure 2 depicts a sample for each preprocessing step. In the
segmentation module of OSIRIS v4.1, the contours of the iris are detected by the Viterbi
algorithm [51]. Subsequently, a modified Daugman’s rubber-sheet model is deployed to
perform normalization. With this approach, the original iris image in any resolution is
unwrapped into a size-invariant band. In this work, all the iris images are normalized to
the size of 103 × 360. To eliminate the inference, we cut off the first 3 rows and the bottom
40 rows and then resize the image to a resolution of 30 × 360. After that, the contrast
of the image is enhanced using histogram equalization [52]. In addition, a conditional
horizontal cropping step is leveraged in the training stage of full-size network, which crops
20–164 columns and 240–306 columns and hence obtains a 30 × 150 normalized image.
It contributes to reducing the time consumption and the probability of overfitting in the
training stage.
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Figure 2. The preprocessing stage including location and segmentation (a), normalization (b),
longitudinal cropping and image enhancement (c), and optional horizontal cropping step (d). The
region between inner and outer green boundary in (a) is the segmented iris.
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3.2. Online Augmentation Method

We develop three well-designed augmentation schemes, namely brightness jitter,
horizontal shift, and longitudinal scaling, to simulate the variant and contamination of the
normalized iris. The explanation for each scheme is expressed as follows:

(1) Brightness jitter: As shown in Figure 3b, a random part of the region is set to
be darker than the surrounding area by convoluting the image with a Gaussian kernel
G ∈ R128×128 with a variance of 28 along both the x-axis and y-axis. The transformation
simulates the non-uniform illumination in an iris acquisition environment. Addition-
ally, previous studies proved the feasibility of achieving a performance improvement by
covering a random region of the input images [53,54].

(2) Horizontal shift: To overcome the varying rotation degree in various subjects,
we perform the translation on normalized iris using a random offset. Figure 3c depicts a
sample of horizon shifts in the right direction. According to the definition of the normalized
iris image, the horizon shift in normalized iris corresponds to the rotation in the original
iris image.

(3) Longitudinal scaling: To better adapt to valid iris size changes caused by individual
difference or pupil scaling, a longitudinal scaling augmentation is conducted on normalized
iris. In this way, the normalized iris is scaled by a random factor F ∈ [0.75, 1.25] along
the longitudinal direction. If F ≥ 1, then the first 30 rows are preserved as a valid region.
Otherwise, a number of last certain rows is mirrored to compensate for the original image
height. All the image rescaling operations are conducted by nearest-neighbor interpolation.
Obviously, the longitudinal scaling refers to the radial scaling in an unsegmented iris. An
example of this operation is illustrated in Figure 3d.
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Figure 3. The examples of the output for each different online augmentation layer. (a) is a normalized
and enhanced iris image randomly picked from CASIA-V3-Interval database. (b–d) are the example of
brightness jitter, horizontal shift, and longitudinal scaling operation, respectively. The red rectangular
window shown in (d) marks the mirrored part of the iris.
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Furthermore, two input channels are randomly switched in the training phase. It is
worth highlighting that these augmentation operations are performed online, which means
the images are stochastically adjusted during the CNN optimization stage, while preserved
in the testing phase. To that end, these functions are integrated into an augmentation layer
at the front of the CNN architecture, which is performed in each mini-batch of the input
data. Benefiting from the online augmentation, only a few classes are needed for model
training and finetuning.

3.3. Modified 2-ch Deep Convolutional Neural Network

As mentioned above, the 2-ch CNN method presents great potential in iris recog-
nition. However, the optimal CNN architecture, which can achieve a trade-off between
performance and computational complexity, has not been fully explored. In contrast to em-
pirically adjusting the hyperparameters such as the depth of the network and the number
of kernels, we employ the pruning method to automatically search for a satisfactory CNN
architecture. As shown in Figure 4a, a full-size CNN (Structure A) is first established and
trained on the CASIA-V3-Interval training set, which extends a total of three branches with
different depths between the first and the last convolutional layer. Hence, three different
forward and backward propagation paths are established. The motivation of constructing
this full-size architecture is to explore the possibility of capturing and integrating various
depth’s feature representation. At the end of the network, a global average pooling (GAP)
layer is utilized to replace the fully connected (FC) layer. The GAP operation sums up all
elements in each feature map channel regardless of its tensor shape. With this approach,
the network can handle any resolution samplings of a normalized iris image [55].

The loss function is the learning objective of a network and, hence, it should be
carefully discussed and designed. Since the comparison of paired iris images is more
inclined to distance measurement rather than classification, we take MSE with L2−norm
as the loss function. Experiment results indicate that the MSE loss outperforms the cross-
entropy (CE) loss and hinge-based loss [40]. The learning objective is the following:

min
ω

M

∑
i=1

(Yi − Ti)
2 +

δ

2
||ω||2 (1)

where ω denote weights of the neural network, M = 256 stands for the mini-batch size,
Yi ∈ R is the i-th network output value, and Ti ∈ {0, 2} the corresponding target label (with
0 and 2 denoting a matching and a non-matching pair, respectively). The regularization
coefficient δ is set to 0.001 in this study. The L2 regularization is motivated to alleviate
the overfitting of the model by constraining the summation of squares of all learnable
parameters. With an appropriate penalty coefficient and sufficient optimizing iterations,
the network can automatically filter out the inoperative weights and retains the informative
convolution kernels so as to enhance the generalization performance.

In Figure 4a, it can be noticed that we place a radial attention layer at the head of each
branch. Assume the tensor X ∈ RH×W×C is feature map fed into the radial attention layer
and the column vector Wa ∈ RH is the radial attention weight to be learned, where C, H,
and W correspond to the channel, height, and width of the feature map, respectively. Then,
the output of this layer Z ∈ RH×W×C can be expressed as:

Z = repmat(Wa, [1 W C]) ◦ X (2)

where repmat(Wa, [1 W C]) represents the duplication operation in the 2nd and 3rd dimen-
sionalities for W and C times of Wa. The operator ◦ corresponds to the Hadamard product.
On the other hand, the gradient of Wa in back propagation is computed as:

dL
dWa

= ∑
W

∑
C

∑
B

dL
dZ
◦ X (3)
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where L indicates the loss function of the network and B the mini-batch size in training
phase. The radial attention layer weights different regions along the radial direction in the
corresponding original iris image. It is proven that this layer can provide better recognition
performance and help to prune the model.
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Figure 4. The architecture of the proposed convolutional neural network. (a) presents the full-size
2-ch CNN (Structure A). (b,c) illustrate the branch-pruned and channel-pruned CNN (Structure B
and C), respectively. For convenience, a convolutional layer, batch normalization layer, and a ReLu
activation layer are integrated into a convolution block (conv) in order. For a specific convolution
block, the kernel size and the number of output channels are marked in the upper left and right
corners of the box, respectively. All the convolution operations are with the stride of 1 in each
direction. Moreover, for the max-pooling layer (maxpool), the pooling region and pooling stride are
also marked in the upper left and right corners of the box, respectively.

3.4. Structural Model Pruning

The pruning operation permanently drops the less important weights from the trained
model for computational efficiency. The structural model pruning schemes such as branch
level pruning and channel level pruning can be easily implemented without extra optimiza-
tion costs. In this study, the full-size CNN (Structure A) is first trained by 22,000 epochs
on only 33 classes (874 genuine pairs + 1748 imposter pairs) in the CASIA-V3-Interval iris
database. The model is optimized by the Adam optimizer [56], with an initial learning rate
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of 5× 10−4 decreasing exponentially to 10−6. It is noteworthy that all weights in full-size
CNN are initialized by the Glorot method [57]. After training, we gather the L1 norm of all
radial layers of a full-size network and compare them with a fixed threshold Tprune = 10−3.
Then, the radial layer whose norm cannot reach the Tprune and its corresponding branches
are discarded. Finally, a branch-selected network is obtained. As depicted in Figure 4b,
only the deepest branch is reserved.

Additionally, the branch-pruned network can be further condensed by channel prun-
ing. For this purpose, we calculate the accumulated L1 norm of the output channel. By
applying the aforementioned fixed threshold Tprune, the unimportant output channels
together with their corresponding input channels are cut off permanently. Similarly, the
corresponding weights in batch normalization (BN) layers are pruned. The application
of L1 norm can preserve more useful kernels, which can lead to a less performance loss.
Figure 4c depicts the architecture of the final pruned network (Structure C). It is clear
that the whole network, especially the last two convolution blocks of the network, has
far fewer parameters compared to the network without channel pruning (Structure B).
Actually, Structure C only contains 33,268 parameters, which is far smaller than all the CNN
architectures employed in previous iris recognition studies to the best of our knowledge.
Figure 5 depicts an example of channel pruning. Figure 5a shows the 16 × 32 channel map
in the 2nd convolutional layer in branch-pruned 2-ch CNN (Structure B). In this layer, we
have a total of 512 convolution kernels. As shown in Figure 5c, the channel map is reduced
to a size of 11 × 22. The output channel pruning also leads to the input channel pruning in
the next layer, which is presented in Figure 5b,d as horizontal black lines. The 3rd channel
map is hence pruned from the size of 32 × 64 to 22 × 51.
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After structural pruning, the model needs to retrain for maintaining accuracy. We
retrain the model on the same training set of CASIA-V3-Interval by 500 epochs, with a
minor learning rate of 10−6. Finally, we finetune the model on different target database
to adapt the domain of the target database. It is worth emphasizing that this finetuning
procedure is done with the non-cropped normalized iris images in resolution of 30 × 360,
which enables the model to capture more informative features and gain better performance.
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Specifically, the model is finetuned for 1200 epochs, with an initial learning rate of 5× 10−5

decreasing exponentially to 2× 10−7.

3.5. Efficient Encoding for Large Scale Iris Recognition

A primary limitation of the 2-ch CNN method lies in its massive computational
complexity. When a sample is sent in, this sample is paired with all the samples in the
database. Each pair is fed into the 2-ch CNN to conduct forward propagation, which is more
time-consuming than only calculating the encoding distance. Accordingly, we propose a
hybrid method in the identification scenario. The max-pooling (MP) layer marked with a
bold red rectangular frame in Figure 4c acts as an encoding layer. When performing iris
registration for large scale iris identification scenario, which is time-sensitive, a pair of
identical normalized iris images is fed into the 2-ch CNN and then the flattened feature
map of the encoding layer is extracted and stored as a unique encoding for discarding
the low confidence sample pairs. Meanwhile, the original normalized iris images are also
stored for a more accurate classification with condensed 2-ch CNN. Unlike other deep
learning-based feature encoding methods, the 2-ch CNN is not trained for the encoding
purpose. However, we find that some of the middle layers in the condensed 2-ch CNN
model have a powerful encoding ability, which means we can simultaneously obtain an
iris image encoder with lower precision but higher efficiency and a pair-wise iris image
classifier with reverse properties by training only one model.

4. Experiments and Results
4.1. Experimental Iris Databases

Three databases, namely CASIA-V1 [58], CASIA-V3-Interval [59], and CASIA-V4-
Thousand [59], are adopted to conduct assessment and analysis in this study. The detailed
description of these databases is reported as follows:

(1) CASIA-V1: A total of 756 iris images with a resolution of 320 × 280 were collected
from 108 eyes. For each eye, seven images were captured in two sessions, where three
samples were collected in the first session and four in the second session. The pupil regions
of all iris images in this database were automatically detected and replaced with a circular
region of uniform intensity to mask out the specular reflections from the NIR illuminators.
Since the iris pupil is edited and the image quality is extremely clear, we conduct the ideal
condition experiment using this database.

(2) CASIA-V3-Interval: In this database, a total of 2639 images with a resolution
of 320 × 280 were collected from 249 subjects but 395 eyes. The number of gathered
images was not fixed for each eye. Therefore, for the convenience of the experiment, only
233 classes (eyes) with an image number of seven or more are selected in this work. If the
number of images in a class is greater than seven, we randomly choose seven images. In
this study, the first 33 classes are adopted to train the original full-size network.

(3) CASIA-V4-Thousand: As the first publicly released iris database containing a
thousand people, a total of 20,000 iris images were included in the CASIA-V4-Thousand
database. Thus, ten pictures with a resolution of 640 × 480 were enrolled for each person’s
left and right eye. The dominating variations in the database are eyeglasses and strong
specular reflections, which pose a more significant challenge to the iris recognition algo-
rithm. We select the left eye of the first 648 subjects to carry out related experiments. In
addition, seven pictures are randomly selected from each class.

For convenience, here we use CASIA-V3 and CASIA-V4 database to represent the
CASIA-V3-Interval and CASIA-V4-Thousand database. As shown in Figure 6, a typical
sample is randomly picked from each database. It is worth noting that only the training
data in the CASIA-V3 dataset are employed to train the original CNN from scratch, and
the training data in other databases are used for finetuning.
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4.2. Experimental Results for Iris Identification and Verification

To fully assess the accurateness and effectiveness of our algorithm, we test the model
on three publicly available databases under different configurations. The identification
evaluation criterion is designated to the recognition accuracy, which is defined as the
ratio of the number of correct recognitions to the total number of recognitions. In an
identification epoch, the sample paired with all samples in the database, and if the sample
pairs with the lowest score belong to the same class, then it is called a correct recognition.
Since each class in all databases uniformly has seven images, in this study, all the reported
identification results are the mean of the 7-fold cross-validation. On the other hand, we
select the equal error rate (EER) as the evaluation criterion of verification scenario. The
evaluation program pairs all possible combinations of the sample in the database and
gained the false acceptance rate (FAR) and false rejection rate (FRR) at different thresholds.
With a particular threshold, the FAR is equal to FRR and also EER.

Table 1 illustrates ten comparative experimental results evaluated in the identification
and verification scenario. In the identification scenario, two typical conditions, including
one picture registered and the six pictures registered, are considered. At the same time,
the EER, along with the FRR at FAR = 0.1% and FRR at FAR = 0.01%, is regarded as the
important performance indicator for verification assessment. As described above, the
proposed network is first trained on 33 classes in the CASIA-V3 database from scratch, and
the model is then retrained on the same 33-class training set after pruning operation. The
retrained model yields an excellent EER of 0.76%, and outstanding recognition accuracy
of 98.95% is fulfilled with only one picture registered in each class. Further, the full
receiver operating characteristic (ROC) curve is plotted in Figure 7. For the CASIA-V1
database, the result achieved by the transferred model is reasonably good because of
its high image quality. Moreover, if the model is finetuned with 20 classes to adapt its
domain, the performance cannot gain much improvement. The CASIA-V4-Thousand
database is widely recognized as one of the most challenging iris databases. Therefore, we
comprehensively evaluate our proposed algorithm on it. As can be seen from experiments
4–10, various classes are employed for finetuning, and more than 600 classes (approximately
10M pairs) serve as the testing set. Experiment 4 indicates that the transferred model can
reach an accuracy of 98.21% in the identification scenario and an EER of 3.54% in the
verification scenario. However, the transferred model may not be suitable for the few
pictures registered condition or high security required application scenarios. Sequentially,
we finetuned the model with 5–30 classes from the target CASIA-V4 database to fit the
target domain feature distribution. Interestingly, it can be observed that by exploiting
only five classes (138 genuine pairs and 68 imposter pairs) for finetuning, we can gain a
significant performance improvement. With the increase of the amount of tuning data,
the performance of the model is gradually improved. The results indicate that 30 classes
(815 genuine pairs and 1630 imposter pairs) can positively meet the finetuning demands.
The adequately finetuned model is able to provide an accuracy of 97.92% to 99.77% in
the identification scenario. An extremely low EER of 1.19% can be reached while the FRR
is 2.16% and 3.31% under the FAR = 0.1% and FAR = 0.01% criterion. The extraordinary
performance of the model ensures it can be applied to iris recognition scenes with high
accuracy and security requirements.
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Table 1. The identification and verification results for different database using different model configuration.

No.
Database
(Method)

Training
Classes

Testing
Classes

Identification Verification

Register 1
Picture

Register 6
Pictures EER FRR@ FAR

= 0.1%
FRR@ FAR

= 0.01%

1 CASIA-V3 33 200 98.95% 100% 0.76% 1.24% 1.45%
2 CASIA-V1 0 108 99.51% 100% 0.35% 0.57% 1.32%
3 CASIA-V1 20 88 99.76% 100% 0.33% 0.43% 1.46%
4 CASIA-V4 0 648 89.53% 98.21% 3.54% 16.92% 31.13%
5 CASIA-V4 5 615 94.89% 99.47% 2.20% 5.84% 12.40%
6 CASIA-V4 10 615 96.10% 99.58% 1.80% 4.28% 8.87%
7 CASIA-V4 15 615 97.12% 99.72% 1.30% 2.89% 5.40%
8 CASIA-V4 20 615 97.65% 99.79% 1.23% 2.39% 3.96%
9 CASIA-V4 25 615 97.86% 99.81% 1.18% 2.25% 3.50%
10 CASIA-V4 30 615 97.92% 99.77% 1.19% 2.16% 3.31%
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4.3. Ablation Study

We perform extensive ablation experiments on the CASIA-V3-Interval database to
comparatively demonstrate the effectiveness of each technique we employed in this study.
From the results illustrated in Table 2, it can be observed that our well-designed model
(i.e., the model in experiment 2) defeats the widely used baseline model codenamed as
Resnet-18 with an EER improvement of 0.29%. The L2 regularization term can not only help
to prune the network architecture but also contribute to enhancing the model. According
to experiment 4, it can be seen that if the online augmentation layer is removed, the
performance of the model will suffer greatly. This can demonstrate the effectiveness and
necessity of the online augmentation method for small-scale datasets. The comparison
between experiment 5 and experiment 2 shows the superiority of the MSE loss over the
CE loss. Experiment 6 indicates that the radial attention layer can reduce EER at the cost
of adding very few learnable parameters. From experiments 6, 7, and 8, we can conclude
that if we only prune the model without the retraining procedure, the accuracy of the
model will decrease. When performing the finetuning, the performance of the pruned
model will exceed that of the unpruned model. In experiment 9, we specially build a single
branch network with the same structure as the pruned network and train from scratch.
Compared with the result in experiment 8, the necessity of pruning is obvious. Finally, we
add the reshape operation, which means the model is trained on a cropped normalized iris
image dataset with a resolution of 30 × 150 but finetuned by an uncropped dataset with a
resolution of 30 × 360. In this way, despite some interferences mixed in, more iris textures
can be captured, and hence the best performance is gained.
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Table 2. The ablation study under different model configuration.

No. Structure Loss Reg. Aug. Att. Pru. Fin. EER

1 Resnet MSE
√ √

× × × 1.55%
2 A MSE

√ √
× × × 1.26%

3 A MSE ×
√

× × × 1.86%
4 A MSE

√
× × × × 3.40%

5 A CE
√ √

× × × 1.55%
6 A MSE

√ √ √
× × 1.09%

7 C MSE
√ √ √ √

× 1.22%
8 C MSE

√ √ √ √ √
1.03%

9 C † MSE
√ √ √ √ √

1.26%
10 C o MSE

√ √ √ √ √
0.76%

Reg., Aug., Att., Pru., and Fin. are the abbreviation of regularization term, augmentation layer, attention layer,
pruning, and finetuning. † The model is trained from scratch. o The uncropped iris images with resolution of
30 × 360 serve as input.

To better examine the effectiveness of the proposed online augmentation scheme, an
ablation study is done on 150 testing classes and five finetuning classes in CASIA-V4. As
shown in Table 3, all three types of augmentation schemes can effectively contribute to
improving the performance of the model. Compared to the non-augmented situation,
scheme BJ., HS., and LS. alone can offer a 0.16%, 0.30%, and 0.09% reduction in EER,
respectively. Moreover, the combination of these three online augmentation methods
can achieve a better result. When all three augmentation schemes are utilized, the best
performance is yielded.

Table 3. The ablation study of the online augmentation method.

No. BJ. HS. LS. EER FRR@ FAR = 0.1% FRR@ FAR = 0.01%

1 × × × 2.80% 9.46% 17.05%
2

√
× × 2.64% 8.00% 14.86%

3 ×
√

× 2.50% 8.89% 16.83%
4 × ×

√
2.71% 9.30% 17.43%

5 ×
√ √

2.36% 7.84% 16.16%
6

√
×

√
2.50% 6.48% 14.41%

7
√ √

× 2.36% 7.84% 14.48%
8

√ √ √
2.27% 6.06% 13.97%

BJ., HS., and LS. stand for the brightness jitter, horizontal shift, and longitudinal scaling.

4.4. Encoding Ability Research

Now we explore the encoding ability of the 2-ch CNN model. For convenience, we
define the discarding accuracy D-Accuracy as the following equation:

D− Accuracy =

Nd
∑
i

NR
∑
j

1
{

Sij < Thr
}

Nd × NR
(4)

where Thr is a threshold, which can be specified manually or by setting the discarding ratio.
Nd and NR are the number of identification epochs and the number of registered iris images
in each class, respectively. Sij is introduced as the matching score of pairing the original
sample with its intra-class j-th sample in the i-th identification epoch. The descriptor 1{·}
stands for the indicator function. In this experiment, the discarding accuracy is defined to
evaluate the encoding performance of the model. We traverse the encoding capabilities of
all layers on CASIA-V3 database. As depicted in Table 4, the discarding accuracy of each
layer and its corresponding feature length and matching time in one identification epoch is
analyzed in detail. It can be observed that layer 17 reaches the best discarding accuracy and
the smallest variance simultaneously. Nevertheless, it is not the best choice for encoding
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matching due to its corresponding lengthy feature vectors and high time consumption.
There are two feasible choices for generating encodings. First is layer 19: compared to
the 17th layer, the 19th layer has more than doubled the time-consuming reduction with a
loss of discarding accuracy of approximately 1%. The second choice is layer 22, which can
achieve 90.23% discarding accuracy even if the feature length is only 960. In this work, we
choose the 19th layer as the encoding layer.

Table 4. The comparison of the encoding ability in different depth of the proposed CNN.

Layer Type Discarding Accuracy (%) Feature Length Time (ms)

1 Input 85.61 ± 2.43 21,600 21.00
2 Attention 85.35 ± 2.61 21,600 20.76
3 Convolution 77.65 ± 2.86 118,800 104.56
4 BN 72.37 ± 3.24 118,800 104.09
5 ReLu 72.19 ± 3.18 118,800 104.09
6 MP 75.32 ± 2.92 29,700 27.57
7 Attention 73.36 ± 3.21 29,700 28.48
8 Convolution 71.37 ± 3.17 59,400 52.91
9 BN 70.82 ± 3.23 59,400 53.02

10 ReLu 76.00 ± 3.26 59,400 53.74
11 MP 83.58 ± 2.68 15,840 15.67
12 Convolution 90.79 ± 1.30 36,720 33.68
13 BN 91.70 ± 0.95 36,720 33.37
14 ReLu 89.48 ± 1.83 36,720 33.28
15 MP 95.88 ± 0.86 18,360 18.31
16 Convolution 96.52 ± 0.70 10,080 10.99
17 BN 96.55 ± 0.68 10,080 10.82
18 ReLu 96.27 ± 1.09 10,080 10.90
19 MP 95.42 ± 1.33 3360 5.00
20 Convolution 80.92 ± 2.66 960 2.25
21 BN 84.39 ± 3.07 960 2.25
22 ReLu 90.23 ± 1.92 960 2.41
23 Convolution 77.75 ± 2.57 8160 9.08
24 BN 77.48 ± 2.22 8160 9.10
25 ReLu 72.51 ± 2.50 8160 9.04
26 GAP 26.79 ± 1.75 68 1.33
27 FC 16.83 ± 1.23 1 1.05

Attention refers to the radial attention layer.

Figure 8a demonstrates the discarding accuracy of the proposed modified 2-ch CNN
model in different discarding ratios ranging from 0% to 90% and a different number of
registered pictures ranging from 1 to 6. We can conclude that a discarding accuracy over
95% can be achieved with a 90% discarding ratio regardless of the number of registered
images per class. Such a satisfying result demonstrates the feasibility of taking the 2-ch
CNN as a feature extractor. Besides, Figure 8b plots the curve of identification accuracy
varying with the discarding ratio under a different number of registered pictures. It reveals
the effectiveness of the discarding process for the identification scenario. Meanwhile, the
impact of different number of registered pictures on identification accuracy is also well
demonstrated. We can see that when only one picture is registered per class, the identifica-
tion accuracy is mainly restricted by the discarding accuracy. However, when more than
two pictures are registered in each class, the identification accuracy is almost independent
of the discarding accuracy. Even in some cases, the screening process can contribute a slight
improvement to identification accuracy. This experimental result indicates that only three
pictures of each eye are needed to ensure an identification accuracy of more than 99%.
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5. Discussion
5.1. Weight Visualization

We further visualized some examples of the 2D convolution kernel at the microscopic
level learned from each convolution layer. It can be seen in Figure 9 that the convolution
kernels in the first four layers learn somewhat chaotic kernel maps. Using these kernels,
the model can adapt to various inputs with stochastic perturbations and thereby gain the
feature in abstract and robustness. On the other hand, the kernel map of the last two layers
seems more specific and regular. Such a phenomenon may be because the feature maps
processed from the previous layer have been regularly reshaped, which is insensitive to
input disturbances.
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As aforementioned, the radial attention layer acts as a branch selection gate as well as
an iris region weight function. Figure 10 illustrates the weights that the radial attention
layers learned. The smaller value of the X-axis stands for the radial part closer to the pupil.
It can be seen from the weight distribution of both radial attention layers that the closer to
the pupil, the larger the weight.
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5.2. Time Consumption Experiments

In order to further ascertain the effectiveness of the encoding matching process, we
calculate the time consumption of the algorithm under different parameter configurations
and different devices, which are shown in Figure 11. Traditional iris recognition algo-
rithms are usually deployed on the central processing unit (CPU) [60], and they are hard
to parallelize. By contrast, CNN can easily be parallelized and deployed on the graphics
processing unit (GPU) by using the mainstream deep learning framework [61]. To compre-
hensively evaluate the proposed algorithm’s execution efficiency in different application
situations, GPU (NVIDIA GTX-1080) and CPU (i7-8700K, 3.7GHz) are considered in this
experiment. This experiment is also conducted on CASIA-V3-Interval database. An in-
teresting phenomenon can be observed from Figure 11a,b that with the increase of the
number of registered pictures in each class, the computational time consumption of the
encoding matching process grows linearly on GPU and nonlinearly on CPU. This may be
caused by different caching mechanisms in the CPU. The elapsed time in identification
procedure represented in Figure 11c,d can correspond to the identification accuracy in
Figure 8b under the same conditions. For GPU devices, it takes only 24 ms (with 90%
discarding ratio and one picture registered per class) to 677 ms (with no discarding and
six pictures registered per class) to recognize 1400 images. In contrast, for CPU devices, it
takes 95 to 5816ms under the same conditions. It should be specified that since the 2-ch
CNN network is affected by the stack order of the input channels, we conducted double
forward propagation with different channel orders. About 0.25 ms is needed for our model
to process one pair of images, which is nearly three times less time-consuming than the
DeepIris model mentioned in the literature [47]. Based on this premise, we can choose the
corresponding device and discarding ratio according to the actual demand to balance the
efficiency and expenses.
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5.3. Interpretability Analysis

Despite the 2-ch CNN method has proven its effectiveness in image patch comparison,
no efforts have been made to understand how the model obtained its score. In this study, we
employed the gradient of the model regression output with respect to the last convolutional
layer in a network to find which parts of the iris dominate the output score. The Grad-Cam
approach [62] is deployed for this purpose, and the analysis results are shown in Figure 12.
The red part of the image in both two channels can be regarded as the region with the most
distinctive iris texture. Figure 12a,d demonstrate two typical cases of ideal recognition.
For the iris pair identified as intra-class, only a few areas are marked in red, while for
the iris pair between classes, most regions are considered inconsistent. In addition, two
situations in which the confidence of the output score is relatively low are depicted in
Figure 12b,e. We can see that contaminations, including eyelids and eyelashes, are enrolled
in these normalized iris images, which affects the judgment of the model. At last, we
provide two examples of false detection in Figure 12c,f. The false-negative in Figure 12c is
caused by the uneven width of the segmented iris image, which may be the result of pupil
dilation generated with dramatic light changes or other interferences. Correspondingly, a
false-positive is described in Figure 12f. We observe that this iris pair is too similar and that
it can be easily mistakenly identified even by human visual inspection. On considering all
these images, it can be found that the different parts marked by our model are seldomly
located in the polluted area, which is adequate proof that the model has strong robustness
to the stochastic contaminations in the iris image.
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Figure 12. (a–f) are the heat maps of ROI visualized by Grad-CAM algorithm. The most discrim-
inative iris texture area is marked by red and yellow. (g) is the colorbar of the heat map, where
the yellow and red area represents a higher score while the green and blue area correspond to the
medium score, and the bottom 20% score is set to zero.

5.4. Comparison of Iris Recognition Results

Table 5 compares our proposed method with other methods assessed on CASIA
databases in recent years. For the classic iris recognition algorithm, the comparison is
made with IrisCode. Othman et al. [50] constructed the OSIRIS framework and presented
the classic iris recognition chain, which reproduced the IrisCode algorithm proposed by
Daugman [29]. The IrisCode is a handcrafted feature, but it can be applied to the new
database without training data. Our proposed method fulfills an EER of 3.54% in the
cross-database case on the CASIA-V4 dataset, which is approximately the same as the
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IrisCode method. However, when a few samples are utilized for finetuning the model, a
significant performance advantage is shown by our method. For the deep learning-based
method, the encoding ability of the off-the-shelf CNN features are explored in No. 2,
3, 7 entries of Table 5. Moreover, in examples from the literature [45,63–65], new CNN
models were established, which were trained from scratch, and then their classification
ability investigated. It can be seen that all the mentioned methods need a great number
of samples for training, which is impossible for practical application scenarios. Moreover,
the CNN models utilized in previous studies also have far more parameters, while the
performance is evidently lower than ours. The 2-ch CNN-based method was studied
in more recent research [49] and [66]. Proença et al. [49] proposed a segment-less CNN
model based on VGG-19, and the model was trained by 45,000 genuine pairs and 1 million
imposter pairs on CASIA-V4. As a result, an EER of 3% was acquired on testing phase,
which was much lower than ours. Chen et al. [66] proposed a novel loss named Tight
Center and assessed it with three types of classic architectures on the CASIA-V4 database
by adopting a cross-database scheme. As a result, the best result with an EER of 2.36%
and an accuracy of 99.58% was reported, which was slightly better than our cross-database
results. However, their method was trained on 50,632 images on the ND-IRIS-0405 iris
database, and then the model was evaluated on 38,573 genuine pairs and 107,589 imposter
pairs on the CASIA-V4 database. In contrast, our method is trained on only 231 images in
the CASIA-V3 iris database and test on more than 10M pairs in the CASIA-V4 database.
Moreover, we compute the number of parameters and computational cost of our model
and other compared models. As illustrated in Table 5, our model has a total number of 33K
parameters and floating-point operations (FLOPs) of 49.1M, which are lower than most of
the previous models. The model employed in [64] has the least computational cost, but its
identification accuracy is far lower than ours. Overall, our proposed condensed 2-ch CNN
method achieves state-of-the-art performance on three publicly available databases with
few sample tuning and much fewer model parameters.
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Table 5. Comparison on the performance of different methods proposed in recent years.

No Studies Year Method Parameters/FLOPs Evaluation Protocol Augmentation Result

1 Othman et al. [50] 2016 IrisCode (2D-Gabor filter + Hamming
Distance) -/- CASIA-V4: 602 classes (for testing) None CASIA-V4: 3.5%

(Verification EER)

2 Nguyen et al. [43] 2017 Pre-trained CNN (Dense-Net) + SVM -/- CASIA-V4: 1000 classes (Train: 70%,
Test: 30%) * None CASIA-V4: 98.8%

(Identification Accuracy)

3 Alaslani et al. [67] 2018 Pre-trained CNN (Alex-Net) + SVM 41 M/2.2 B

CASIA-V1: 60 classes
CASIA-V3: 60 classes
CASIA-V4: 60 classes
(Train: 70%, Test: 30%) *

None

CASIA-V1: 98.3%
CASIA-V3: 89%
CASIA-V4: 98%
(Identification Accuracy)

4 Wang et al. [63] 2018 MiCoRe-Net >1.4 M/>50 M

CASIA-V3: 218 classes (Train:
1346 images, Test: 218 images) *
CASIA-V4: 1000 classes (Train:
9000 images, Test: 1000 images) *

Rotation and
Cropping

CASIA-V3: 99.08%
CASIA-V4: 88.7%
(Identification Accuracy)

5 Tobji et al. [64] 2019 FMnet 15 K/10 M CASIA-V4: 1000 classes (Train: 70%,
Test: 30%) * None CASIA-V4: 95.63%

(Identification Accuracy)

7 Boyd et al. [68] 2019 Pre-trained/Finetuned CNN
(ResNet-50) + SVM 25 M/5.1 B CASIA-V4: 1000 classes (Train: 70%,

Test: 30%) * None CASIA-V4: 99.03%
(Identification Accuracy)

6 Liu et al. [45] 2019 Fuzzified image + Capsule network >4 M/- CASIA-V4: 1000 classes (Train: 80%,
Test: 20%) None CASIA-V4: 83.1%

(Identification Accuracy)

8 Lee et al. [65] 2019 Deep ResNet-152 +Matching distance >53 M/>10 B CASIA-V4: 1000 classes (Train: 50%,
Test: 50%)

Translation and
Cropping

CASIA-V4: 1.33%
(Verification EER)

9 Proença et al. [49] 2019 VGG-19 based CNN 138 M/- CASIA-V4: 2000 classes (Train:
1000 classes, Test: 1000 classes)

Scale transform and
Intensity transform

CASIA-V4: 3.0%
(Verification EER)

10 Chen et al. [66] 2020 Tiny-VGG based CNN >10 M/>1.3 B
CASIA-V4: 140 K pairs
(Train: 50,632 images on another
database)

Contrast, Brightness,
and Distortion

CASIA-V4: 99.58%
(Identification Accuracy)
CASIA-V4: 2.36%
(Verification EER)

11 Proposed Method 2021 Condensed 2-ch CNN 33 K/49.1 M

CASIA-V1: 108 classes (Finetune:
20 classes, Test: 88 classes)
CASIA-V3: 233 classes (Train:
33 classes, Test: 200 classes)
CASIA-V4: 648 classes (Finetune:
30 classes, Test: 615 classes)

Brightness jitter,
Horizontal shift, and
Longitudinal scaling
(Online)

CASIA-V1: 100%
CASIA-V3: 100%
CASIA-V4: 99.77%
(Identification Accuracy)
CASIA-V1: 0.33%
CASIA-V3: 0.76%
CASIA-V4: 1.19%
(Verification EER)

* Training set and testing set share same classes. K-Kilo, M-Million, B-Billion.
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6. Conclusions

This work presents a new framework for large-scale iris verification and identification
using 2-ch CNN. Four key innovations, including the hybrid framework for large-scale iris
identification and verification, radial attention layer for weighting different iris regions,
online augmentation schemes for enhancing the robustness, and structural pruning for
alleviating computational burden, are introduced in 2-ch CNN to improve the performance.
The proposed method is evaluated on three publicly available databases. The experimental
results indicate that our method has outstanding efficiency and performance over previous
studies utilizing deep learning-based methods and handcrafted feature-based methods.
Moreover, the satisfying results achieved on the CASIA-V4-Thousand database indicate
that the proposed method can be applied in challenging iris recognition situations. This
work also investigates the encoding ability of the 2-ch CNN and finds that some middle
layers have excellent encoding ability. This enables the 2-ch CNN to be applied to large-
scale iris identification. Since all three types of online augmentation schemes carefully
designed in this study are proven to be beneficial for model performance, we will continue
to develop these schemes and consider more contaminations in iris images, such as eyelids
and eyelashes. Additionally, the multi-modal identification approach, which combines
iris recognition with other biometrics approaches such as face recognition and palmprint
recognition, is suggested for future work.
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